Distribution of alternation points in uniform polynomial approximation
نویسندگان
چکیده
منابع مشابه
Sequences with equi-distributed extreme points in uniform polynomial approximation
Let E be a compact set in C with connected complement and positive logarithmic capacity. For any f continuous on E and analytic in the interior of E, we consider the distribution of extreme points of the error of best uniform polynomial approximation on E. Let Λ = (nj) be a subsequence of N such that nj+1/nj → 1. If, for n ∈ Λ, An(f) ⊆ ∂E denotes the set of extreme points of the error function,...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملLocating good points for multivariate polynomial approximation
Locating good points for multivariate polynomial approximation, in particular interpolation, is an open challenging problem, even in standard domains. One set of points that is always good, in theory, is the so-called Fekete points. They are defined to be those points that maximize the (absolute value of the) Vandermonde determinant on the given compact set. However, these are known analyticall...
متن کاملThe Density of Extreme Points in Complex Polynomial Approximation
Let K be a compact set in the complex plane having connected and regular complement, and let / be any function continuous on K and analytic in the interior of K. For the polynomials pn(¡) of respective degrees at most n of best uniform approximation to / on K, we investigate the density of the sets of extreme points And) :={zeK: \f{z) p*n{f)(z)\ = \\f Pn(¡)\\K} in the boundary of K.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0759662-2